LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical and Experimental Optimization of the Graft Density of Functionalized Anti-Biofouling Surfaces by Cationic Brushes

Photo from academic.microsoft.com

Diseases and complications related to catheter materials are severe problems in biomedical material applications, increasing the infection risk and medical expenses. Therefore, there is an enormous demand for catheter materials… Click to show full abstract

Diseases and complications related to catheter materials are severe problems in biomedical material applications, increasing the infection risk and medical expenses. Therefore, there is an enormous demand for catheter materials with antibacterial and antifouling properties. Considering this, in this work, we developed an approach of constructing antibacterial surfaces on polyurethane (PU) via surface-initiated atom transfer radical polymerization (SI-ATRP). A variety of cationic polymers were grafted on PU. The biocompatibility and antifouling properties of all resulting materials were evaluated and compared. We also used a theoretical algorithm to investigate the anticoagulant mechanism of our PU-based grafts. The hemocompatibility and anti-biofouling performance improved at a 86–112 μg/cm2 grafting density. The theoretical simulation demonstrated that the in vivo anti-fouling performance and optimal biocompatibility of our PU-based materials could be achieved at a 20% grafting degree. We also discuss the mechanism responsible for the hemocompatibility of the cationic brushes fabricated in this work. The results reported in this paper provide insights and novel ideas on material design for applications related to medical catheters.

Keywords: experimental optimization; theoretical experimental; optimization graft; cationic brushes; density; anti biofouling

Journal Title: Membranes
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.