LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Review on Polymer Precursors of Carbon Molecular Sieve Membranes for Olefin/Paraffin Separation

Carbon molecular sieve (CMS) membranes have been developed to replace or support energy-intensive cryogenic distillation for olefin/paraffin separation. Olefin and paraffin have similar molecular properties, but can be separated effectively… Click to show full abstract

Carbon molecular sieve (CMS) membranes have been developed to replace or support energy-intensive cryogenic distillation for olefin/paraffin separation. Olefin and paraffin have similar molecular properties, but can be separated effectively by a CMS membrane with a rigid, slit-like pore structure. A variety of polymer precursors can give rise to different outcomes in terms of the structure and performance of CMS membranes. Herein, for olefin/paraffin separation, the CMS membranes derived from a number of polymer precursors (such as polyimides, phenolic resin, and polymers of intrinsic microporosity, PIM) are introduced, and olefin/paraffin separation properties of those membranes are summarized. The effects from incorporation of inorganic materials into polymer precursors and from a pyrolysis process on the properties of CMS membranes are also reviewed. Finally, the prospects and future directions of CMS membranes for olefin/paraffin separation and aging issues are discussed.

Keywords: olefin paraffin; cms membranes; paraffin separation; carbon molecular; polymer precursors

Journal Title: Membranes
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.