LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Phase Structural Evolution and Gas Separation Performances of Cellulose Acetate/Polyimide Composite Membrane from Polymer to Carbon Stage

Photo from wikipedia

Blending and heat-treatment play significant roles in adjusting gas separation performances of membranes, especially for incorporating thermally labile polymers into carbon molecular sieve membranes (CMSMs). In this work, cellulose acetate… Click to show full abstract

Blending and heat-treatment play significant roles in adjusting gas separation performances of membranes, especially for incorporating thermally labile polymers into carbon molecular sieve membranes (CMSMs). In this work, cellulose acetate (CA) is introduced into polyimide (PI) as a sacrificial phase to adjust the structure and gas separation performance from polymer to carbon. A novel result is observed that the gas permeability is reduced, even when the immiscible CA phase decomposes and forms pores after heat treatment at 350 °C. After carbonization at 600 °C, the miscible CA has changed without contribution, while the role of the immiscible CA phase has changed from original hindrance to facilitation, the composite-based CMSM at a CA content of 10 wt.% shows highest performances, a H2 permeability of ~5300 Barrer (56% enhancement) with a similar H2/N2 permselectivity of 42. The structural analyses reveal that the chain interactions and phase separation behaviors between CA and PI play critical roles on membrane structures and gas diffusion, and the corresponding phase structural evolutions during heat treatment and carbonization determine gas separation properties.

Keywords: gas separation; separation performances; gas; polymer carbon; separation; cellulose acetate

Journal Title: Membranes
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.