LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of the Peptization Process and Thermal Treatment on the Sol-Gel Preparation of Mesoporous α-Alumina Membranes

Photo by lanirudhreddy from unsplash

Compared to traditional membrane materials, alumina membranes are particularly beneficial for industrial wastewater treatment. However, the development of mesoporous α-alumina membranes for ultrafiltration applications is still a challenge due to… Click to show full abstract

Compared to traditional membrane materials, alumina membranes are particularly beneficial for industrial wastewater treatment. However, the development of mesoporous α-alumina membranes for ultrafiltration applications is still a challenge due to uncontrolled pore size. In this study, we optimized the sol-gel method for the fabrication of a high-performance mesoporous α-alumina membrane. The peptization conditions (pH and peptization time) and phase transformation of boehmite were investigated to achieve better properties of the α-alumina membrane. The surface properties of the membrane were observed to be improved by reducing the system pH to 3.5 and increasing the peptization time to 24 h. The effect of sintering temperature on the phase transformation behavior, microstructures and performance of the membranes was also elucidated. An α-alumina ultrafiltration membrane with an average thickness of 2 μm was obtained after sintering at 1100 °C. The molecular weight cut-off of the α-alumina membrane, as obtained by the filtration of aqueous PEG solution, was approximately 163 kDa (12.5 nm). This is the smallest pore size ever reported for pure α-alumina membranes.

Keywords: alumina membranes; mesoporous alumina; peptization; sol gel; treatment

Journal Title: Membranes
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.