LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sequential Membrane Filtration to Recover Polyphenols and Organic Acids from Red Wine Lees: The Antioxidant Properties of the Spray-Dried Concentrate

Photo from wikipedia

The vinification process produces a considerable amount of waste. Wine lees are the second most generated byproduct, representing around 14% of total vinification wastes. They are a valuable source of… Click to show full abstract

The vinification process produces a considerable amount of waste. Wine lees are the second most generated byproduct, representing around 14% of total vinification wastes. They are a valuable source of natural antioxidants, mainly polyphenols, as well as organic acids, such as tartaric acid. This paper deals with the application of an integrated, environment friendly membrane separation process to recover polyphenols and organic acids. A two-step membrane process is described, consisting of an ultra- and a nano-filtration process. The physicochemical and antioxidant properties of all the process streams were determined. High Pressure Liquid Chromatography (HPLC) was employed for identifying certain individual organic acids and polyphenols, while the antioxidant potential was determined by the 2,2′-diphenyl-1-picrylhydrazyl radical) (DPPH) radical scavenging ability and ferric reducing ability. A liquid concentrate stream containing 1351 ppm of polyphenols was produced and then spray dried. The resulting powder retained most of the polyphenols and antioxidant properties and was successfully applied to a real food system to retard lipid oxidation, followed by Thiobarbituric Acid Reactive Substances (TBARS) and the determination of oxymyoglobin content. The results show that membrane separation technology is an attractive alternative process for recovering value-added ingredients from wine lees.

Keywords: organic acids; process; antioxidant properties; wine lees; polyphenols organic; recover polyphenols

Journal Title: Membranes
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.