LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modification and Functionalization of Fibers Formed by Electrospinning: A Review

Photo from wikipedia

The development of new materials with specific functionalities for certain applications has been increasing with the advent of nanotechnology. A technique widely used for this purpose is electrospinning, because control… Click to show full abstract

The development of new materials with specific functionalities for certain applications has been increasing with the advent of nanotechnology. A technique widely used for this purpose is electrospinning, because control of several parameters involved in the process can yield nanoscale fibers. In addition to the production of innovative and small-scale materials, through structural, chemical, physical, and biological modifications in the fibers produced in electrospinning, it is possible to obtain specific properties for a given application. Thus, the produced fibers can serve different purposes, such as in the areas of sensors, catalysis, and environmental and medical fields. Given this context, this article presents a review of the electrospinning technique, addressing the parameters that influence the properties of the fibers formed and some techniques used to modify them as specific treatments that can be conducted during or after electrospinning. In situ addition of nanoparticles, changes in the configuration of the metallic collector, use of alternating current, electret fibers, core/shell method, coating, electrospray-coating, plasma, reinforcing composite materials, and thermal treatments are some of the examples addressed in this work. Therefore, this work contributes to a better comprehension of some of the techniques mentioned in the literature so far.

Keywords: formed electrospinning; nanotechnology; electrospinning review; fibers formed; modification functionalization; functionalization fibers

Journal Title: Membranes
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.