LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance Comparison of Polymeric and Silica-Based Multi-Bed Pervaporation Membrane Reactors during Ethyl Levulinate Production

Photo from wikipedia

A detailed numerical study of ethyl levulinate (EtLA) production with levulinic acid (LA) and ethanol (Et) in a multi-bed traditional reactor (MB-TR) and a silica-based and polymeric multi-bed pervaporation membrane… Click to show full abstract

A detailed numerical study of ethyl levulinate (EtLA) production with levulinic acid (LA) and ethanol (Et) in a multi-bed traditional reactor (MB-TR) and a silica-based and polymeric multi-bed pervaporation membrane reactors (MB-PVMR) was conducted and the efficiency of each design was studied under different operation conditions. Due to water production in the EtLA production process, water removal by a pervaporation system may improve process performance. Our results showed that MB-PVMR had higher performance compared with MB-TR. In addition, the silica membrane was more effective in water removal compared with the polymeric membrane. Therefore, higher LA conversion was achievable by a silica-based multi-bed pervaporation membrane reactor (SMB-PVMR). All the results were evaluated for percentage of water removal and LA conversion, based on variations in the Et/LA molar ratio, feed molar flow, reaction zone temperature, and catalyst loading. The results showed that water removal was higher than 95% and LA conversion of about 95% was attained by SMB-PVMR.

Keywords: pervaporation; production; membrane; silica; multi bed

Journal Title: Membranes
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.