The membrane electrode assembly (MEA) is the core component of proton exchange membrane (PEM) water electrolysis cell, which provides a place for water decomposition to generate hydrogen and oxygen. The… Click to show full abstract
The membrane electrode assembly (MEA) is the core component of proton exchange membrane (PEM) water electrolysis cell, which provides a place for water decomposition to generate hydrogen and oxygen. The microstructure, thickness, IrO2 loading as well as the uniformity and quality of the anodic catalyst layer (ACL) have great influence on the performance of PEM water electrolysis cell. Aiming at providing an effective and low-cost fabrication method for MEA, the purpose of this work is to optimize the catalyst ink formulation and achieve the ink properties required to form an adherent and continuous layer with doctor blade coating method. The ink formulation (e.g., isopropanol/H2O of solvents and solids content) were adjusted, and the doctor blade thickness was optimized. The porous structure and the thickness of the doctor blade coating ACL were further confirmed with the in-plane and the cross-sectional SEM analyses. Finally, the effect of the ink formulation and the doctor blade thickness of the ACL on the cell performance were characterized in a PEM electrolyzer under ambient pressure at 80 °C. Overall, the optimized doctor blade coating ACL showed comparable performance to that prepared with the spraying method. It is proved that the doctor blade coating is capable of high-uniformity coating.
               
Click one of the above tabs to view related content.