LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cationised Fibre-Based Cellulose Multi-Layer Membranes for Sterile and High-Flow Bacteria Retention and Inactivation

Photo from wikipedia

Low-cost, readily available, or even disposable membranes in water purification or downstream biopharma processes are becoming attractive alternatives to expensive polymeric columns or filters. In this article, the potential of… Click to show full abstract

Low-cost, readily available, or even disposable membranes in water purification or downstream biopharma processes are becoming attractive alternatives to expensive polymeric columns or filters. In this article, the potential of microfiltration membranes prepared from differently orientated viscose fibre slivers, infused with ultrafine quaternised (qCNF) and amino-hydrophobised (aCNF) cellulose nanofibrils, were investigated for capturing and deactivating the bacteria from water during vacuum filtration. The morphology and capturing mechanism of the single- and multi-layer structured membranes were evaluated using microscopic imaging and colloidal particles. They were assessed for antibacterial efficacy and the retention of selected bacterial species (Escherichia coli, Staphylococcus aureus, Micrococcus luteus), differing in the cell envelope structure, hydrodynamic biovolume (shape and size) and their clustering. The aCNF increased biocidal efficacy significantly when compared to qCNF-integrated membrane, although the latter retained bacteria equally effectively by a thicker multi-layer structured membrane. The retention of bacterial cells occurred through electrostatic and hydrophobic interactions, as well as via interfibrous pore diffusion, depending on their physicochemical properties. For all bacterial strains, the highest retention (up to 100% or log 6 reduction) at >50 L/h∗bar∗m2 flow rate was achieved with a 4-layer gradient-structured membrane containing different aCNF content, thereby matching the performance of industrial polymeric filters used for removing bacteria.

Keywords: retention; multi layer; fibre based; cationised fibre; flow; based cellulose

Journal Title: Membranes
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.