Anodes based on substoichiometric titanium oxide (Ti4O7) are among the most effective for the anodic oxidation of organic pollutants in aqueous solutions. Such electrodes can be made in the form… Click to show full abstract
Anodes based on substoichiometric titanium oxide (Ti4O7) are among the most effective for the anodic oxidation of organic pollutants in aqueous solutions. Such electrodes can be made in the form of semipermeable porous structures called reactive electrochemical membranes (REMs). Recent work has shown that REMs with large pore sizes (0.5–2 mm) are highly efficient (comparable or superior to boron-doped diamond (BDD) anodes) and can be used to oxidize a wide range of contaminants. In this work, for the first time, a Ti4O7 particle anode (with a granule size of 1–3 mm and forming pores of 0.2–1 mm) was used for the oxidation of benzoic, maleic and oxalic acids and hydroquinone in aqueous solutions with an initial COD of 600 mg/L. The results demonstrated that a high instantaneous current efficiency (ICE) of about 40% and a high removal degree of more than 99% can be achieved. The Ti4O7 anode showed good stability after 108 operating hours at 36 mA/cm2.
               
Click one of the above tabs to view related content.