LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Conductive and Flexible Gel Polymer Electrolyte with Bis(Fluorosulfonyl)imide Lithium Salt via UV Curing for Li-Ion Batteries

Photo from wikipedia

A series of new self-standing gel polymer electrolytes (SGPEs) were fabricated by ultraviolet (UV) curing and investigated for application in flexible lithium-ion batteries. Compared with traditional gel polymer electrolytes (combine… Click to show full abstract

A series of new self-standing gel polymer electrolytes (SGPEs) were fabricated by ultraviolet (UV) curing and investigated for application in flexible lithium-ion batteries. Compared with traditional gel polymer electrolytes (combine with solvents or plasticizers), these new SGPEs were prepared simply by curing different weight ratios of lithium bis(fluorosulfonyl)imide (LiFSI) with a methacrylic linear monomer, poly (ethylene glycol) dimethacrylate (PEGDMA). Noticeably, there were no solvents or plasticizers combined with the final SGPEs. Owing to this, the SGPEs showed high flexibility and strong mechanical stability. Some paramount physicochemical and electrochemical characters were observed. The SGPEs demonstrated good thermal stability below 150 °C and an extremely low glass transition temperature (Tg) (around −75 °C). Moreover, plastic crystal behaviors were also identified in this study. Ultimately, the SGPEs demonstrated excellent ionic conductivity at room temperature, which proves that these new SGPEs could be widely applied as a prospective electrolyte in flexible lithium-ion batteries.

Keywords: bis fluorosulfonyl; lithium; ion batteries; gel polymer

Journal Title: Membranes
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.