LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preventing Silica Scale Formation Using Hydroxide Ions Generated by Water Electrolysis

Photo from wikipedia

The reaction of silica with various cations in a solution and with hydroxide ions generated by water electrolysis was investigated as a means of preventing the formation of silica scales… Click to show full abstract

The reaction of silica with various cations in a solution and with hydroxide ions generated by water electrolysis was investigated as a means of preventing the formation of silica scales in geothermal binary power generation. Through batch and continuous experiments, it was found that all silica in the cathode phase of a reaction device could be removed if the necessary amounts of magnesium and calcium were present. This occurs because a silica-magnesium-calcium compound is produced via a polymerization reaction with cations in a solution and with hydroxide ions generated by electrolysis. Analysis by inductively coupled plasma and energy dispersive X-ray spectroscopy shows that this material has the formula 2CaO-5MgO-8SiO2-H2O, and thus is likely generated by the reaction proposed by Sheikholeslami et al. (2019). Increasing the current sent through the reaction solution subsequently produces calcium carbonate. This technique for the separation of silica and calcium from aqueous solutions can be operated continuously without channel clogging, which indicates the possibility of practical applications. However, overly high currents promote the migration of protons from the anode to cathode phases, which inhibits the formation of precipitates due to a neutralization reaction. The proposed method is an effective approach for removing silica from a solution in geothermal binary power generation; although, a means of suppressing the effects of proton generation will be necessary if the process is also to be used to remove calcium ions.

Keywords: formation; electrolysis; reaction; calcium; ions generated; hydroxide ions

Journal Title: Membranes
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.