LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Twin Roll Casting and Secondary Cooling of 6.0 wt.% Silicon Steel

Photo from wikipedia

Iron–silicon alloys with up to 6.5 wt.% Si offer an improvement of soft magnetic properties in electrical steels compared to conventional electrical steel grades. However, steels with high Si contents… Click to show full abstract

Iron–silicon alloys with up to 6.5 wt.% Si offer an improvement of soft magnetic properties in electrical steels compared to conventional electrical steel grades. However, steels with high Si contents are very brittle and cannot be produced by cold rolling. In addition to solid solution hardening, it is assumed that the B2- and DO3-superlattice structures are responsible for the poor cold workability. In this work, two cast strips with 6.0 wt.% Si were successfully produced by the twin roll strip casting process and cooled differently by secondary cooling. The aim of the different cooling strategies was to suppress the formation of the embrittling superlattice structures and thus enable further processing by cold rolling. A comprehensive material characterization allows for the understanding of the influence of casting parameters and cooling strategies on segregation, microstructure and superlattice structure. The results show that both cooling strategies are not sufficient to prevent the formation of B2- and DO3-structures. Although the dark field images show a condition which is far from equilibrium, the achieved condition is not sufficient to ensure cold processing of the material.

Keywords: roll casting; twin roll; secondary cooling; cooling strategies; steel; silicon

Journal Title: Metals
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.