LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on Nitrogen-Doped Biomass Carbon-Based Composite Cobalt Selenide Heterojunction and Its Electrocatalytic Performance

Photo from wikipedia

With the increasing utilization of clean energy, the development and utilization of hydrogen energy has become a research topic of great significance. Cobalt selenide (CS) is an electrocatalyst with great… Click to show full abstract

With the increasing utilization of clean energy, the development and utilization of hydrogen energy has become a research topic of great significance. Cobalt selenide (CS) is an electrocatalyst with great potential for oxygen evolution reaction (OER). In this paper, a nitrogen-doped biomass carbon (1NC@3)-based composite cobalt selenide (CS) heterojunction was prepared via a solvothermal method using kelp as the raw material. Structural, morphological, and electrochemical analyses were conducted to evaluate its performance. The electrochemical test results demonstrate that the overpotential of the CS/1NC@3 catalyst in the OER process was 292 mV, with a Tafel slope of 98.71 mV·dec−1 at a current density of 10 mA·cm−2. The electrochemical performance of the CS/1NC@3 catalyst was further confirmed by theoretical calculations, which revealed that the presence of the biomass carbon substrate enhanced the charge transport speed of the OER process and promoted the OER process. This study provides a promising strategy for the development of efficient electrocatalysts for OER applications.

Keywords: biomass carbon; cobalt selenide; performance

Journal Title: Metals
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.