LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Rolling Reduction on Microstructures and Mechanical Properties of Sc-Containing Al-3.2Cu-1.5Li Alloy

Photo by austriannationallibrary from unsplash

The effects of various rolling reductions (64.7%, 72.1%, 81.4% and 88.2%) on the microstructures and mechanical behaviors of Sc-containing Al-3.2Cu-1.5Li-based alloys were experimentally investigated through XRD, SEM (equipped with EBSD),… Click to show full abstract

The effects of various rolling reductions (64.7%, 72.1%, 81.4% and 88.2%) on the microstructures and mechanical behaviors of Sc-containing Al-3.2Cu-1.5Li-based alloys were experimentally investigated through XRD, SEM (equipped with EBSD), TEM and the tensile test. The results showed that the grains of hot-rolled and T6-treated alloys are mainly dominated by substructure features, and the addition of the trace Sc element can obviously impede the static and dynamic recrystallization due to the formation of fine and stable nano-Al3(Sc, Zr) particles. Additionally, the combined effects of fine grains, dispersion, substructure and precipitation strengthening make the alloys with a rolling reduction of 81.4% possess higher tensile properties. With an increase in the rolling reduction, the tensile strength of the alloys increases first and then decreases, while the elongation gradually increases and then reaches a plateau, which was ascribed to the variation in the grain size and substructure features.

Keywords: 2cu 5li; effect rolling; microstructures mechanical; rolling reduction; containing 2cu; reduction

Journal Title: Metals
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.