LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of Glass Fiber-Doped High-Resistivity Hot-Pressed Permanent Magnets for Reducing Eddy Current Loss

Photo from wikipedia

The Nd-Fe-B hot-deformation magnet with high resistivity was successfully prepared by hot-pressing and hot-deformation of Nd-Fe-B fast-quenched powder with amorphous glass fiber. After the process optimization, the resistivity of the… Click to show full abstract

The Nd-Fe-B hot-deformation magnet with high resistivity was successfully prepared by hot-pressing and hot-deformation of Nd-Fe-B fast-quenched powder with amorphous glass fiber. After the process optimization, the resistivity of the magnet was increased from 0.383 mΩ·cm to 7.2 mΩ·cm. Therefore, the eddy current loss of magnets can be greatly reduced. The microstructure shows that the granular glass fiber forms a continuous isolation layer during hot deformation. At the same time, the boundary of Nd-Fe-B quick-quenched the flake and glass fiber from the transition layer, which improves the binding of the two, and which can effectively prevent the spalling of the isolation layer. In addition, adding glass fiber improves the orientation of the hot deformation magnet to a certain extent. The novel design concept of insulation materials provides new insights into the development and application of rare earth permanent magnet materials.

Keywords: glass; glass fiber; high resistivity; hot deformation

Journal Title: Metals
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.