LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Proton Irradiation on Zr/Nb Nanoscale Multilayer Structure and Properties

Photo by mybbor from unsplash

The effect of proton irradiation on the structure, phase composition, defect state and nanohardness of Zr/Nb nanoscale multilayer coatings was investigated. Preservation of the Zr/Nb layered structure with 50 and… Click to show full abstract

The effect of proton irradiation on the structure, phase composition, defect state and nanohardness of Zr/Nb nanoscale multilayer coatings was investigated. Preservation of the Zr/Nb layered structure with 50 and 100 nm thick layers, was observed after irradiation with protons at 1720 keV energy and 3.4 × 1015, 8.6 × 1015 and 3.4 × 1016 ions/cm2 fluences, and the interfaces remained incoherent. In the Zr/Nb nanoscale multilayer coatings with individual layer thicknesses of 10 and 25 nm, there were insignificant fluctuations in interplanar distance, which were influenced by changes in irradiation fluence, and the interfaces were partially destroyed and became semicoherent. Changing irradiation fluence in the investigated ranges led to a decrease in the nanohardness of the Zr/Nb nanoscale multilayer coatings with individual layer thicknesses of 10–50 nm. Variable-energy positron Doppler broadening analysis revealed that these changes are primarily caused by peculiarities of the localization and accumulation of the embedded ions and do not cause a significant increase in the S-parameters of Zr/Nb nanoscale multilayer coatings with a layer thickness less than 100 nm.

Keywords: effect proton; structure; nanoscale multilayer; proton irradiation; irradiation

Journal Title: Metals
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.