For the first time, using optical, scanning, and transmission electron microscopy and X-ray phase analysis in combination with measurements of tensile mechanical properties, we obtained data on the structural features… Click to show full abstract
For the first time, using optical, scanning, and transmission electron microscopy and X-ray phase analysis in combination with measurements of tensile mechanical properties, we obtained data on the structural features of the polycrystalline shape-memory eutectoid Cu-Al-Ni-(B) alloys doped by aluminum (of 10 and 14 wt% Al in total amount), nickel (of 3, 4, and 4.5 wt% Ni), and boron (0.02–0.3 wt% B) in various compositions. The effect of boron on the grain sizes, structure, phase composition, and mechanical properties of shape memory (SM) alloys has been studied. The localization of aluminum borides in the structure was investigated and an effect of grain growth inhibition in the (α + β) and β Cu-Al-Ni-B alloys was established, both in the cast state of the alloys considered and after their heat treatment.
               
Click one of the above tabs to view related content.