LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temperature-Time Superposition Effect on Compressive Properties of AZ31B Magnesium Composite Foams

Photo from wikipedia

Magnesium composite foams with 10 vol. % of hollow ceramic microspheres (CMs) were prepared by modified melt foaming method. Specimens with homogeneous pore structures were subjected to various heating temperature… Click to show full abstract

Magnesium composite foams with 10 vol. % of hollow ceramic microspheres (CMs) were prepared by modified melt foaming method. Specimens with homogeneous pore structures were subjected to various heating temperature (150, 250, 320, 400, and 500 °C, respectively) and enduring times (1, 2, 4, 6, and 24 h, respectively). Evolution of microstructure and mechanical properties of the samples, before and after the heating processes were examined by applying X-ray diffraction technique (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and quasi-static uniaxial compression test. The results showed that as heating temperature and enduring time increasing, β-Mg17Al12 phases gradually dissolved, resulting in a solid-solution strengthening effect. Meanwhile, internal stress relaxation in the matrix leads to the decrease of yield strength and micro hardness of the specimens. When compared with the unheated foams, the treated specimens possessed lower micro-hardness, yield strength, and energy absorption capacity due to the dissolution of β-Mg17Al12 phases and the release of internal stress. However, higher strain hardening exponents for almost all of the treated composite foams were observed and the reasons were discussed. It is proposed that more factors should be taken into account when using heated composite foams in practical applications.

Keywords: composite foams; temperature; time; effect; magnesium composite

Journal Title: Metals
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.