LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure and Tensile Properties of the Mg-6Zn-4Al-xSn Die Cast Magnesium Alloy

Photo by tomspentys from unsplash

The effect of various Sn contents (1–2 wt. %) on the microstructure, age hardening response, and tensile and casting properties of the high-pressure die cast Mg-6Zn-4Al alloy were studied. All… Click to show full abstract

The effect of various Sn contents (1–2 wt. %) on the microstructure, age hardening response, and tensile and casting properties of the high-pressure die cast Mg-6Zn-4Al alloy were studied. All as-cast alloys consisted of α-Mg and icosahedral quasi-crystalline phase; and the addition of 2% Sn caused the formation of Mg2Sn phases. Dendrite structure and eutectic phases were observably refined by Sn addition. The hot tearing susceptibility of the die cast Mg-6Zn-4Al alloy prominently decreased with increasing Sn addition. During T6 heat treatment, Sn addition did not obviously affect the time to reach peak hardness, but significantly enhanced the age hardening response and improved the strength of alloys under peak-aged conditions. Compared to single aging, double aging resulted in the higher density of finer β1′ and β2′ precipitates. The double aged Mg-6Zn-4Al-1Sn alloy offered the optimum tensile properties among all conditions. The yield strength, ultimate tensile strength, and elongation were 209 MPa, 305 MPa, and 4.3%, respectively.

Keywords: tensile properties; 6zn 4al; die cast; addition; alloy

Journal Title: Metals
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.