LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biological Filtering and Substrate Promiscuity Prediction for Annotating Untargeted Metabolomics

Photo from wikipedia

Mass spectrometry coupled with chromatography separation techniques provides a powerful platform for untargeted metabolomics. Determining the chemical identities of detected compounds however remains a major challenge. Here, we present a… Click to show full abstract

Mass spectrometry coupled with chromatography separation techniques provides a powerful platform for untargeted metabolomics. Determining the chemical identities of detected compounds however remains a major challenge. Here, we present a novel computational workflow, termed extended metabolic model filtering (EMMF), that aims to engineer a candidate set, a listing of putative chemical identities to be used during annotation, through an extended metabolic model (EMM). An EMM includes not only canonical substrates and products of enzymes already cataloged in a database through a reference metabolic model, but also metabolites that can form due to substrate promiscuity. EMMF aims to strike a balance between discovering previously uncharacterized metabolites and the computational burden of annotation. EMMF was applied to untargeted LC–MS data collected from cultures of Chinese hamster ovary (CHO) cells and murine cecal microbiota. EMM metabolites matched, on average, to 23.92% of measured masses, providing a > 7-fold increase in the candidate set size when compared to a reference metabolic model. Many metabolites suggested by EMMF are not catalogued in PubChem. For the CHO cell, we experimentally confirmed the presence of 4-hydroxyphenyllactate, a metabolite predicted by EMMF that has not been previously documented as part of the CHO cell metabolic model.

Keywords: substrate promiscuity; biological filtering; model; metabolic model; untargeted metabolomics

Journal Title: Metabolites
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.