Metabolic footprinting represents a holistic approach to gathering large-scale metabolomic information of a given biological system and is, therefore, a driving force for systems biology and bioprocess development. The ongoing… Click to show full abstract
Metabolic footprinting represents a holistic approach to gathering large-scale metabolomic information of a given biological system and is, therefore, a driving force for systems biology and bioprocess development. The ongoing development of automated cultivation platforms increases the need for a comprehensive and rapid profiling tool to cope with the cultivation throughput. In this study, we implemented a workflow to provide and select relevant metabolite information from a genome-scale model to automatically build an organism-specific comprehensive metabolome analysis method. Based on in-house literature and predicted metabolite information, the deduced metabolite set was distributed in stackable methods for a chromatography-free dilute and shoot flow-injection analysis multiple-reaction monitoring profiling approach. The workflow was used to create a method specific for Saccharomyces cerevisiae, covering 252 metabolites with 7 min/sample. The method was validated with a commercially available yeast metabolome standard, identifying up to 74.2% of the listed metabolites. As a first case study, three commercially available yeast extracts were screened with 118 metabolites passing quality control thresholds for statistical analysis, allowing to identify discriminating metabolites. The presented methodology provides metabolite screening in a time-optimised way by scaling analysis time to metabolite coverage and is open to other microbial systems simply starting from genome-scale model information.
               
Click one of the above tabs to view related content.