We recently found that dual decline in memory and gait speed was consistently associated with an increased risk of dementia compared to decline in memory or gait only or no… Click to show full abstract
We recently found that dual decline in memory and gait speed was consistently associated with an increased risk of dementia compared to decline in memory or gait only or no decline across six aging cohorts. The mechanisms underlying this relationship are unknown. We hypothesize that individuals who experience dual decline may have specific pathophysiological pathways to dementia which can be indicated by specific metabolomic signatures. Here, we summarize blood-based metabolites that are associated with memory and gait from existing literature and discuss their relevant pathways. A total of 39 eligible studies were included in this systematic review. Metabolites that were associated with memory and gait belonged to five shared classes: sphingolipids, fatty acids, phosphatidylcholines, amino acids, and biogenic amines. The sphingolipid metabolism pathway was found to be enriched in both memory and gait impairments. Existing data may suggest that metabolites from sphingolipids and the sphingolipid metabolism pathway are important for both memory and gait impairments. Future studies using empirical data across multiple cohorts are warranted to identify metabolomic signatures of dual decline in memory and gait and to further understand its relationship with future dementia risk.
               
Click one of the above tabs to view related content.