A reliable and practical renal-lipid quantification and imaging method is needed. Here, the feasibility of an accelerated MRSI method to map renal fat fractions (FF) at 3T and its repeatability… Click to show full abstract
A reliable and practical renal-lipid quantification and imaging method is needed. Here, the feasibility of an accelerated MRSI method to map renal fat fractions (FF) at 3T and its repeatability were investigated. A 2D density-weighted concentric-ring-trajectory MRSI was used for accelerating the acquisition of 48 × 48 voxels (each of 0.25 mL spatial resolution) without respiratory navigation implementations. The data were collected over 512 complex-FID timepoints with a 1250 Hz spectral bandwidth. The MRSI sequence was designed with a metabolite-cycling technique for lipid–water separation. The in vivo repeatability performance of the sequence was assessed by conducting a test–reposition–retest study within healthy subjects. The coefficient of variation (CV) in the estimated FF from the test–retest measurements showed a high degree of repeatability of MRSI-FF (CV = 4.3 ± 2.5%). Additionally, the matching level of the spectral signature within the same anatomical region was also investigated, and their intrasubject repeatability was also high, with a small standard deviation (8.1 ± 6.4%). The MRSI acquisition duration was ~3 min only. The proposed MRSI technique can be a reliable technique to quantify and map renal metabolites within a clinically acceptable scan time at 3T that supports the future application of this technique for the non-invasive characterization of heterogeneous renal diseases and tumors.
               
Click one of the above tabs to view related content.