LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PNPLA1-Mediated Acylceramide Biosynthesis and Autosomal Recessive Congenital Ichthyosis

Photo from wikipedia

The stratum corneum of the epidermis acts as a life-sustaining permeability barrier. Unique heterogeneous ceramides, especially ω-O-acylceramides, are key components for the formation of stable lamellar membrane structures in the… Click to show full abstract

The stratum corneum of the epidermis acts as a life-sustaining permeability barrier. Unique heterogeneous ceramides, especially ω-O-acylceramides, are key components for the formation of stable lamellar membrane structures in the stratum corneum and are essential for a vital epidermal permeability barrier. Several enzymes involved in acylceramide synthesis have been demonstrated to be associated with ichthyosis. The function of patatin-like phospholipase domain-containing protein 1 (PNPLA1) was a mystery until the finding that PNPLA1 gene mutations were involved in autosomal-recessive congenital ichthyosis (ARCI) patients, both humans and dogs. PNPLA1 plays an essential role in the biosynthesis of acylceramide as a CoA-independent transacylase. PNPLA1 gene mutations cause decreased acylceramide levels and impaired skin barrier function. More and more mutations in PNPLA1 genes have been identified in recent years. Herein, we describe the structural and functional specificity of PNPLA1, highlight its critical roles in acylceramide synthesis and skin barrier maintenance, and summarize the PNPLA1 mutations currently identified in ARCI patients.

Keywords: biosynthesis; ichthyosis; recessive congenital; congenital ichthyosis; pnpla1; autosomal recessive

Journal Title: Metabolites
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.