Glycation products produced by the non-enzymatic reaction between reducing carbohydrates and amino compounds have received increasing attention in both food- and health-related research. Although liquid chromatography mass spectrometry (LC-MS) methods… Click to show full abstract
Glycation products produced by the non-enzymatic reaction between reducing carbohydrates and amino compounds have received increasing attention in both food- and health-related research. Although liquid chromatography mass spectrometry (LC-MS) methods for analyzing glycation products already exist, only a few common advanced glycation end products (AGEs) are usually covered by quantitative methods. Untargeted methods for comprehensively analyzing glycation products are still lacking. The aim of this study was to establish a method for simultaneously characterizing a wide range of free glycation products using the untargeted metabolomics approach. In this study, Maillard model systems consisting of a multitude of heterogeneous free glycation products were chosen for systematic method optimization, rather than using a limited number of standard compounds. Three types of hydrophilic interaction liquid chromatography (HILIC) columns (zwitterionic, bare silica, and amide) were tested due to their good retention for polar compounds. The zwitterionic columns showed better performance than the other two types of columns in terms of the detected feature numbers and detected free glycation products. Two zwitterionic columns were selected for further mobile phase optimization. For both columns, the neutral mobile phase provided better peak separation, whereas the acidic condition provided a higher quality of chromatographic peak shapes. The ZIC-cHILIC column operating under acidic conditions offered the best potential to discover glycation products in terms of providing good peak shapes and maintaining comparable compound coverage. Finally, the optimized HILIC-MS method can detect 70% of free glycation product features despite interference from the complex endogenous metabolites from biological matrices, which showed great application potential for glycation research and can help discover new biologically important glycation products.
               
Click one of the above tabs to view related content.