LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Short-Term Estivation and Hibernation Induce Changes in the Blood and Circulating Hemocytes of the Apple Snail Pomacea canaliculata

Photo by aminmoshrefi from unsplash

States of natural dormancy include estivation and hibernation. Ampullariids are exemplary because they undergo estivation when deprived of water or hibernation when exposed to very low temperatures. Regardless of the… Click to show full abstract

States of natural dormancy include estivation and hibernation. Ampullariids are exemplary because they undergo estivation when deprived of water or hibernation when exposed to very low temperatures. Regardless of the condition, ampullariids show increased endogenous antioxidant defenses, anticipating the expected respiratory burst during reoxygenation after reactivation, known as “Preparation for Oxidative Stress (POS)”. In this work, we tested the POS hypothesis for changes in the blood and hemocytes of the bimodal breather Pomacea canaliculata (Ampullariidae) induced at experimental estivation and hibernation. We described respiratory (hemocyanin, proteins, lactate), antioxidant (GSH, uric acid, SOD, CAT, GST), and immunological (hemocyte levels, ROS production) parameters. We showed that, although the protein level remains unchanged in all experimental groups, hemocyanin increases in response to estivation. Furthermore, lactate remains unchanged in challenged snails, suggesting an aerobic metabolism during short-term challenges. Blood uric acid increases during estivation and arousal from estivation or hibernation, supporting the previously proposed antioxidant role. Regarding hemocytes, we showed that the total population increases with all challenges, and granulocytes increase during hibernation. We further showed that hibernation affects ROS production by hemocytes, possibly through mitochondrial inhibition. This study contributed to the knowledge of the adaptive strategies of ampullariids to tolerate adverse environmental conditions.

Keywords: pomacea canaliculata; changes blood; hibernation; estivation; estivation hibernation; short term

Journal Title: Metabolites
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.