LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A New Stress-Released Structure to Improve the Temperature Stability of the Butterfly Vibratory Gyroscope

Photo from wikipedia

This paper is devoted to discussing the influence of thermal stress on the performance of the Butterfly Vibratory Gyroscope (BFVG). In many gyroscopes, due to the material properties and the… Click to show full abstract

This paper is devoted to discussing the influence of thermal stress on the performance of the Butterfly Vibratory Gyroscope (BFVG). In many gyroscopes, due to the material properties and the fabrication processes, the deformation caused by residual stress or thermal mechanical stress is of great concern since it directly affects the performance. Here, a new stress-released structure was proposed to reduce the deformation to improve BFVG’s performance considering the symmetry of the electrode and the miniaturization of the structure. Its dimensional parameters relate to the effect of thermal stress release and the stiffness characteristics of the BFVG’s oblique beam. The single parameter analysis method was used to explore the influence of the parameters on the effect of thermal stress release to guide the optimal size of the final design. The effect of thermal stress release in the BFVG at the full range temperature was also tested after the fabrication. The results showed that the influence of thermal stress on the BFVG’s performance effectively reduced.

Keywords: thermal stress; stress; new stress; structure; butterfly vibratory; vibratory gyroscope

Journal Title: Micromachines
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.