Metastatic cancer cells are known to have a smaller cell stiffness than healthy cells because the small stiffness is beneficial for passing through the extracellular matrix when the cancer cells… Click to show full abstract
Metastatic cancer cells are known to have a smaller cell stiffness than healthy cells because the small stiffness is beneficial for passing through the extracellular matrix when the cancer cells instigate a metastatic process. Here we developed a simple and handy microfluidic system to assess metastatic capacity of the cancer cells from a mechanical point of view. A tapered microchannel was devised through which a cell was compressed while passing. Two metastasis B16 melanoma variants (B16-F1 and B16-F10) were examined. The shape recovery process of the cell from a compressed state was evaluated with the Kelvin–Voigt model. The results demonstrated that the B16-F10 cells showed a larger time constant of shape recovery than B16-F1 cells, although no significant difference in the initial strain was observed between B16-F1 cells and B16-F10 cells. We further investigated effects of catechin on the cell deformability and found that the deformability of B16-F10 cells was significantly decreased and became equivalent to that of untreated B16-F1 cells. These results addressed the utility of the present system to handily but roughly assess the metastatic capacity of cancer cells and to investigate drug efficacy on the metastatic capacity.
               
Click one of the above tabs to view related content.