LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vertical GaN-on-GaN Schottky Diodes as α-Particle Radiation Sensors

Photo from wikipedia

Among the different semiconductors, GaN provides advantages over Si, SiC and GaAs in radiation hardness, resulting in researchers exploring the development of GaN-based radiation sensors to be used in particle… Click to show full abstract

Among the different semiconductors, GaN provides advantages over Si, SiC and GaAs in radiation hardness, resulting in researchers exploring the development of GaN-based radiation sensors to be used in particle physics, astronomic and nuclear science applications. Several reports have demonstrated the usefulness of GaN as an α-particle detector. Work in developing GaN-based radiation sensors are still evolving and GaN sensors have successfully detected α-particles, neutrons, ultraviolet rays, x-rays, electrons and γ-rays. This review elaborates on the design of a good radiation detector along with the state-of-the-art α-particle detectors using GaN. Successful improvement in the growth of GaN drift layers (DL) with 2 order of magnitude lower in charge carrier density (CCD) (7.6 × 1014/cm3) on low threading dislocation density (3.1 × 106/cm2) hydride vapor phase epitaxy (HVPE) grown free-standing GaN substrate, which helped ~3 orders of magnitude lower reverse leakage current (IR) with 3-times increase of reverse breakdown voltages. The highest reverse breakdown voltage of −2400 V was also realized from Schottky barrier diodes (SBDs) on a free-standing GaN substrate with 30 μm DL. The formation of thick depletion width (DW) with low CCD resulted in improving high-energy (5.48 MeV) α-particle detection with the charge collection efficiency (CCE) of 62% even at lower bias voltages (−20 V). The detectors also detected 5.48 MeV α-particle with CCE of 100% from SBDs with 30-μm DL at −750 V.

Keywords: gan schottky; radiation sensors; gan gan; particle; vertical gan; radiation

Journal Title: Micromachines
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.