LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical Evaluation of a Multi-Site Clinical Depth Recording Electrode for Monitoring Cerebral Tissue Oxygen

Photo from wikipedia

The intracranial measurement of local cerebral tissue oxygen levels—PbtO2—has become a useful tool for the critical care unit to investigate severe trauma and ischemia injury in patients. Our preliminary work… Click to show full abstract

The intracranial measurement of local cerebral tissue oxygen levels—PbtO2—has become a useful tool for the critical care unit to investigate severe trauma and ischemia injury in patients. Our preliminary work in animal models supports the hypothesis that multi-site depth electrode recording of PbtO2 may give surgeons and critical care providers needed information about brain viability and the capacity for better recovery. Here, we present a surface morphology characterization and an electrochemical evaluation of the analytical properties toward oxygen detection of an FDA-approved, commercially available, clinical grade depth recording electrode comprising 12 Pt recording contacts. We found that the surface of the recording sites is composed of a thin film of smooth Pt and that the electrochemical behavior evaluated by cyclic voltammetry in acidic and neutral electrolyte is typical of polycrystalline Pt surface. The smoothness of the Pt surface was further corroborated by determination of the electrochemical active surface, confirming a roughness factor of 0.9. At an optimal working potential of −0.6 V vs. Ag/AgCl, the sensor displayed suitable values of sensitivity and limit of detection for in vivo PbtO2 measurements. Based on the reported catalytical properties of Pt toward the electroreduction reaction of O2, we propose that these probes could be repurposed for multisite monitoring of PbtO2 in vivo in the human brain.

Keywords: oxygen; depth; multi site; surface; tissue oxygen; cerebral tissue

Journal Title: Micromachines
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.