LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Annealing on the Thermoelectricity Properties of the WRe26-In2O3 Thin Film Thermocouples

Photo by seemurray from unsplash

WRe26-In2O3 (WRe26 (tungsten-26% rhenium) and In2O3 thermoelectric materials) thin film thermocouples (TFTCs) have been fabricated based on magnetron sputtering technology, which can be used in temperature measurement. Many annealing processes… Click to show full abstract

WRe26-In2O3 (WRe26 (tungsten-26% rhenium) and In2O3 thermoelectric materials) thin film thermocouples (TFTCs) have been fabricated based on magnetron sputtering technology, which can be used in temperature measurement. Many annealing processes were studied to promote the sensitivity of WRe26-In2O3 TFTCs. The optimal annealing process of the thermocouple under this kind of RF magnetron sputtering method was proposed after analyzing the properties of In2O3 films and the thermoelectric voltage of TFTCs at different annealing processes. The calibration results showed that the WRe26-In2O3 TFTCs achieved a thermoelectric voltage of 123.6 mV at a temperature difference of 612.9 K, with a sensitivity of up to 201.6 µV/K. Also, TFTC kept a stable thermoelectric voltage output at 973 K for 20 min and at 773 K for two hours. In general, the WRe26-In2O3 TFTCs developed in this work have great potential for practical applications. In future work, we will focus on the thermoelectric stability of TFTCs at higher temperatures.

Keywords: wre26 in2o3; in2o3; film thermocouples; thin film

Journal Title: Micromachines
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.