LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Non-Volatile Tunable Terahertz Metamaterial Absorber Using Graphene Floating Gate

Photo by louisacoughlin from unsplash

Based on the graphene floating gate, a tunable terahertz metamaterial absorber is proposed. Compared with the traditional graphene–dielectric–metal absorber, our absorber has the property of being non-volatile and capacity for… Click to show full abstract

Based on the graphene floating gate, a tunable terahertz metamaterial absorber is proposed. Compared with the traditional graphene–dielectric–metal absorber, our absorber has the property of being non-volatile and capacity for anti-interference. Using the finite element method, the paper investigates the absorption spectra, the electric field energy distribution, the tunability and the physical mechanism. In addition, we also analyse the influence of geometry, polarization and incident angles on the absorption. Simulation results show that the bandwidth of the absorption above 90% can reach up to 2.597 THz at the center frequency of 3.970 THz, and the maximum absorption can be tuned continuously from 14.405% to 99.864% by controlling the Fermi level from 0 eV to 0.8 eV. Meanwhile, the proposed absorber has the advantages of polarization insensitivity and a wide angle, and has potential applications in imaging, sensing and photoelectric detection.

Keywords: tunable terahertz; terahertz metamaterial; graphene floating; absorber; metamaterial absorber; floating gate

Journal Title: Micromachines
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.