LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design, Simulation, Fabrication, and Characterization of an Electrothermal Tip-Tilt-Piston Large Angle Micromirror for High Fill Factor Segmented Optical Arrays

Photo from wikipedia

Micro-electromechanical system (MEMS) micromirrors have been in development for many years, but the ability to steer beams to angles larger than 20° remains a challenging endeavor. This paper details a… Click to show full abstract

Micro-electromechanical system (MEMS) micromirrors have been in development for many years, but the ability to steer beams to angles larger than 20° remains a challenging endeavor. This paper details a MEMS micromirror device capable of achieving large motion for both tip/tilt angles and piston motion. The device consists of an electrothermal actuation assembly fabricated from a carefully patterned multilayer thin-film stack (SiO2/Al/SiO2) that is epoxy bonded to a 1 mm2 Au coated micromirror fabricated from an SOI wafer. The actuation assembly consists of four identical actuators, each comprised of a series of beams that use the inherent residual stresses and coefficient of thermal expansion (CTE) mismatches of the selected thin films to enable the large, upward, out-of-plane deflections necessary for large-angle beamsteering. Finite element simulations were performed (COMSOL v5.5) to capture initial elevations and tip/tilt motion displacements and achieved <10% variance in comparison to the experiment. The measured performance metrics of the micromirror include tip/tilt angles of ±23°, piston motion of 127 µm at sub-resonance, and dynamics characterization with observed resonant frequencies at ~145 Hz and ~226 Hz, for tip/tilt and piston motion, respectively. This unique single element design can readily be scaled into a full segmented micromirror array exhibiting an optical fill-factor >85%, making it suitable for optical phased array beam control applications.

Keywords: motion; micromirror; tip tilt; large angle; tilt piston

Journal Title: Micromachines
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.