Powder-based techniques are gaining increasing interest for the fabrication of microstructures on planar substrates. A typical approach comprises the filling of a mold pattern with micron-sized particles of the desired… Click to show full abstract
Powder-based techniques are gaining increasing interest for the fabrication of microstructures on planar substrates. A typical approach comprises the filling of a mold pattern with micron-sized particles of the desired material, and their fixation there. Commonly powder-loaded pastes or inks are filled into the molds. To meet the smallest dimensions and highest filling factors, the utilization of dry powder as the raw material is more beneficial. However, an appropriate automated technique for filling a micro mold pattern with dry micron-sized particles is missing up to now. This paper presents a corresponding approach based on the superimposition of high- and low-frequency oscillations for particle mobilization. Rubber balls are utilized to achieve dense packing. For verification, micromagnets are created from 5 µm NdFeB powder on 8” Si substrates, using the novel automated mold filling technique, as well as an existing manual one. Subsequent atomic layer deposition is utilized to agglomerate the loose NdFeB particles into rigid microstructures. The magnetic properties and inner structure of the NdFeB micromagnets are investigated. It is shown that the novel automated technique outperforms the manual one in major terms.
               
Click one of the above tabs to view related content.