LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Optimization of a Novel MEMS Tuning Fork Gyroscope Microstructure

Photo from wikipedia

This paper presents the design and optimization of a novel MEMS tuning fork gyroscope microstructure. In order to improve the mechanical sensitivity of the gyroscope, much research has been carried… Click to show full abstract

This paper presents the design and optimization of a novel MEMS tuning fork gyroscope microstructure. In order to improve the mechanical sensitivity of the gyroscope, much research has been carried out in areas such as mode matching, improving the quality factor, etc. This paper focuses on the analysis of mode shape, and effectively optimizes the decoupling structure and size of the gyroscope. In terms of structural design, the vibration performance of the proposed structure was compared with other typical structures. It was found that slotting in the middle of the base improved the transmission efficiency of Coriolis vibration, and opening arc slots between the tines reduced the working modal order and frequency. In terms of size optimization, the Taguchi method was used to optimize the relevant feature sizes of the gyroscope. Compared with the initial structure, the transmission efficiency of Coriolis vibration of the optimized gyroscope was improved by about 18%, and the working modal frequency was reduced by about 2.7 kHz. Improvement of these two indicators will further improve the mechanical sensitivity of the gyroscope.

Keywords: optimization novel; novel mems; design optimization; mems tuning; gyroscope; optimization

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.