The current study uses the multi-physics COMSOL software and the Darcy–Brinkman–Forchheimer model with a porosity of ε = 0.4 to conduct a numerical study on heat transfer by Cu-TiO2/EG hybrid… Click to show full abstract
The current study uses the multi-physics COMSOL software and the Darcy–Brinkman–Forchheimer model with a porosity of ε = 0.4 to conduct a numerical study on heat transfer by Cu-TiO2/EG hybrid nano-fluid inside a porous annulus between a zigzagged triangle and different cylinders and under the influence of an inclined magnetic field. The effect of numerous factors is detailed, including Rayleigh number (103 ≤ Ra ≤ 106), Hartmann number (0 ≤ Ha ≤ 100), volume percent of the nano-fluid (0.02 ≤ ϕ ≤ 0.08), and the rotating speed of the cylinder (−4000 ≤ w ≤ 4000). Except for the Hartmann number, which decelerates the flow rate, each of these parameters has a positive impact on the thermal transmission rate.
               
Click one of the above tabs to view related content.