LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical Behavior and Constitutive Model Characterization of Optically Clear Adhesive in Flexible Devices

Photo from wikipedia

Optically clear adhesive (OCA) has been widely used in flexible devices, where wavy stripes that cause troublesome long-term reliability problems often occur. The complex mechanical behavior of OCA should be… Click to show full abstract

Optically clear adhesive (OCA) has been widely used in flexible devices, where wavy stripes that cause troublesome long-term reliability problems often occur. The complex mechanical behavior of OCA should be studied, as it is related to the aforementioned problems. Therefore, it is necessary to establish reasonable mechanical constitutive models for deformation and stress control. In this work, hyperelastic and viscoelastic mechanical tests were carried out systematically and relative constitutive models of OCA material were established. We found that temperature has a great influence on OCA’s mechanical properties. The stress and modulus both decreased rapidly as the temperature increased. In the static viscoelasticity test, the initial stress at 85 °C was only 12.6 kPa, 57.4% lower than the initial stress at 30 °C. However, in the dynamic test, the storage modulus monotonically decreased from 1666.3 MPa to 0.6628 MPa as the temperature rose, and the decline rate reached the maximum near the glass transition temperature (Tg = 0 °C). The test data and constitutive models can be used as design references in the manufacturing process, as well as for product reliability evaluation.

Keywords: clear adhesive; optically clear; flexible devices; temperature; constitutive models; mechanical behavior

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.