LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hysteresis Characteristics and MPI Compensation of Two-Dimensional Piezoelectric Positioning Stage

Photo from wikipedia

Piezoelectric positioning stage is the core component of precision positioning system and advanced instrument. Its hysteresis characteristics, especially rate-dependent characteristics, are the main factors affecting the positioning or control accuracy.… Click to show full abstract

Piezoelectric positioning stage is the core component of precision positioning system and advanced instrument. Its hysteresis characteristics, especially rate-dependent characteristics, are the main factors affecting the positioning or control accuracy. The multi-slope Prandtl–Ishlinskii (MPI) based hysteresis modeling and compensation experiments of two-dimensional piezoelectric positioning stage are discussed. The impact of the driving voltage amplitude and frequency on the hysteresis characteristics of uniaxial piezoelectric actuator in the piezoelectric positioning stage are studied, especially the influence of variable-frequency voltages on the output displacement of a piezoelectric actuator. The MPI compensation control of two-dimensional piezoelectric positioning stage is carried out, and the fitting coefficient R2 is proposed to evaluate the hysteresis compensation accuracy of MPI model. Under the full range driving voltage of 20~120 V, the fitting coefficient reaches more than 99.6%. The experiments of feedforward compensation and feedback compensation are implemented. Having applied the composite triangular-wave signal, the average absolute displacement error of the piezoelectric actuator is 0.1192 μm, as well as the mean square error 0.2949 μm. It demonstrates that the MPI model is effective against hysteresis for two-dimensional piezoelectric positioning stage.

Keywords: positioning stage; hysteresis; compensation; piezoelectric positioning

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.