LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Continuous Glucose Monitoring System Based on Percutaneous Microneedle Array

Photo from wikipedia

A continuous blood glucose monitoring system (CGMS) which include a microneedle-array blood glucose sensor, a circuit module, and a transmission module placed in a wearable device is developed in this… Click to show full abstract

A continuous blood glucose monitoring system (CGMS) which include a microneedle-array blood glucose sensor, a circuit module, and a transmission module placed in a wearable device is developed in this research. When in use, the wearable device is attached to the human body with the microneedle array inserted under the skin for continuous blood glucose sensing, and the measured signals are transmitted wirelessly to a mobile phone or computer for analysis. The purpose of this study is to replace the conventionally used method of puncture for blood collection and test strips are used to measure the blood glucose signals. The microneedle sensor of this CGMS uses a 1 mm length needle in a 3 mm × 3 mm microneedle array for percutaneous minimally invasive blood glucose measurement. This size of microneedle does not cause bleeding damage to the body when used. The microneedle sensor is placed under the skin and their solutions are discussed. The blood glucose sensor measured the in vitro simulant fluid with a glucose concentration range of 50~400 mg/dL. In addition, a micro-transfer method is developed to accurately deposit the enzyme onto the tip of the microneedle, after which cyclic voltammetry (CV) is used to measure the glucose simulation solution to verify whether the difference in the amount of enzyme on each microneedle is less than 10%. Finally, various experiments and analyses are carried out to reduce the size of the device, test effective durability (approximately 7 days), and the feasibility of minimally invasive CGMS is evaluated by tests on two persons.

Keywords: blood; glucose monitoring; microneedle array; blood glucose

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.