LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Powered Galvanic Vibration Sensor

Photo by jareddrice from unsplash

The development of the IoT demands small, durable, remote sensing systems that have energy harvesters and storage. Various energy harvesters are developed, including piezoelectric, triboelectric, electromagnetic, and reverse-electrowetting-on-dielectric. However, integrating… Click to show full abstract

The development of the IoT demands small, durable, remote sensing systems that have energy harvesters and storage. Various energy harvesters are developed, including piezoelectric, triboelectric, electromagnetic, and reverse-electrowetting-on-dielectric. However, integrating energy storage and sensing functionality receives little attention. This paper presents an electrochemical vibration sensor with a galvanic cell (Zn-Cu cell) as energy storage and a vibration transducer. The frequency response, scale factor, long-term response, impedance study, and discharge characteristics are given. This study proved the possibility of integrating energy storage and vibration sensing functionality with promising performance. The performance of the sensor halved within 74 min. The longevity of the sensor is short due to the spontaneous reactions and ions drained. The sensitivity can be restored after refilling the electrolyte. The sensor could be rechargeable by changing to a reversible electrochemical system such as a lead–acid cell in the future.

Keywords: self powered; vibration sensor; vibration; sensor; energy storage

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.