The reverse transcription-polymerase chain reaction (RT-PCR) has been utilized as an effective tool to diagnose the infectious diseases of viruses. In the present work, the oscillating thermocycler is fabricated and… Click to show full abstract
The reverse transcription-polymerase chain reaction (RT-PCR) has been utilized as an effective tool to diagnose the infectious diseases of viruses. In the present work, the oscillating thermocycler is fabricated and performed to carry out the one-step RT-PCR process successfully. The ribonucleic acid (RNA) mixture is pipetted into the fixed sample volume inside an aluminum reaction block. The sample oscillates the pathway onto the linear motion control system and through the specific RT-PCR heating zones with individual homemade thermal control modules. The present oscillating thermocycler combines the merits of the chamber type and the CF type systems. Before PCR, the reaction chamber moves to the low-temperature zone to complete the RT stage and synthesize the complementary deoxyribonucleic acid (DNA). Next, the low-temperature zone is regulated to the annealing zone. Furthermore, the reactive sample is moved back and forth among three isothermal zones to complete PCR. No extra heating zone is required for the RT stage. The total length of the moving displacement of the chamber is within 100 mm. The miniaturization of the oscillating thermocycler can be expected. In our oscillatory device, the denaturation zone located between the annealing and extension zones is suggested as the appropriate arrangement of the heating blocks. Heat management without thermal cross-talk is easy. Finally, an improved oscillating device is demonstrated to execute the RT-PCR process directly, utilized to amplify the canine distemper virus templates successfully, which could be well applied to a low-cost DNA analysis system in the future.
               
Click one of the above tabs to view related content.