LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of a Vertical Graphene-Based Pressure Sensor Using PECVD at a Low Temperature

Photo from wikipedia

Flexible pressure sensors have received much attention due to their widespread potential applications in electronic skins, health monitoring, and human–machine interfaces. Graphene and its derivatives hold great promise for two-dimensional… Click to show full abstract

Flexible pressure sensors have received much attention due to their widespread potential applications in electronic skins, health monitoring, and human–machine interfaces. Graphene and its derivatives hold great promise for two-dimensional sensing materials, owing to their superior properties, such as atomically thin, transparent, and flexible structure. The high performance of most graphene-based pressure piezoresistive sensors relies excessively on the preparation of complex, post-growth transfer processes. However, the majority of dielectric substrates cannot hold in high temperatures, which can induce contamination and structural defects. Herein, a credibility strategy is reported for directly growing high-quality vertical graphene (VG) on a flexible and stretchable mica paper dielectric substrate with individual interdigital electrodes in plasma-enhanced chemical vapor deposition (PECVD), which assists in inducing electric field, resulting in a flexible, touchable pressure sensor with low power consumption and portability. Benefitting from its vertically directed graphene microstructure, the graphene-based sensor shows superior properties of high sensitivity (4.84 KPa−1) and a maximum pressure range of 120 KPa, as well as strong stability (5000 cycles), which makes it possible to detect small pulse pressure and provide options for preparation of pressure sensors in the future.

Keywords: graphene; vertical graphene; pressure; based pressure; sensor; graphene based

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.