LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wireless Photometry Prototype for Tri-Color Excitation and Multi-Region Recording

Photo from wikipedia

Visualizing neuronal activation and neurotransmitter release by using fluorescent sensors is increasingly popular. The main drawback of contemporary multi-color or multi-region fiber photometry systems is the tethered structure that prevents… Click to show full abstract

Visualizing neuronal activation and neurotransmitter release by using fluorescent sensors is increasingly popular. The main drawback of contemporary multi-color or multi-region fiber photometry systems is the tethered structure that prevents the free movement of the animals. Although wireless photometry devices exist, a review of literature has shown that these devices can only optically stimulate or excite with a single wavelength simultaneously, and the lifetime of the battery is short. To tackle this limitation, we present a prototype for implementing a fully wireless photometry system with multi-color and multi-region functions. This paper introduces an integrated circuit (IC) prototype fabricated in TSMC 180 nm CMOS process technology. The prototype includes 3-channel optical excitation, 2-channel optical recording, wireless power transfer, and wireless data telemetry blocks. The recording front end has an average gain of 107 dB and consumes 620 μW of power. The light-emitting diode (LED) driver block provides a peak current of 20 mA for optical excitation. The rectifier, the core of the wireless power transmission, operates with 63% power conversion efficiency at 13.56 MHz and a maximum of 87% at 2 MHz. The system is validated in a laboratory bench test environment and compared with state-of-the-art technologies. The optical excitation and recording front end and the wireless power transfer circuit evaluated in this paper will form the basis for a future miniaturized final device with a shank that can be used in in vivo experiments.

Keywords: excitation; color; wireless photometry; prototype; multi region

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.