LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Comparative Study of a Small-Stroke Energy Harvesting Floor Based on a Multi-Layer Piezoelectric Beam Structure

Photo by mbrunacr from unsplash

Recently, research on the energy harvesting floor is attracting more and more attention due to its possible application in the smart house, invasion monitoring, internet of things, etc. This paper… Click to show full abstract

Recently, research on the energy harvesting floor is attracting more and more attention due to its possible application in the smart house, invasion monitoring, internet of things, etc. This paper introduced a design and comparative study of a small-stroke piezoelectric energy harvesting floor based on a multi-layer piezoelectric beam structure. The multi-layer piezoelectric beams are designed based on simply supported beams in an interdigitated manner. Theoretical analysis is explored to find out the beam number and layer number of the structure. Through this design, the input power from the human footsteps was effectively utilized and transformed into electrical power. The designed piezoelectric energy harvesting floor structure was tested by our designed stepping machine, which can simulate the stepping effect of a walking human on the floor with different parameters such as stepping frequency. Comparative studies of the energy harvester are carried out regarding different stepping frequencies, external circuits, and initial beam shapes. The experimental results showed that the maximum output power of a group of four-layer prototypes was 960.9 µW at a stroke of 4 mm and a step frequency of 0.83 Hz, with the beams connected in parallel.

Keywords: energy harvesting; beam; layer; energy; harvesting floor; floor

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.