LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of Negative Bias Temperature Instability Effect in Nano PDSOI PMOSFET

Photo by fabiooulucas from unsplash

The Negative Bias Temperature Instability (NBTI) effect of partially depleted silicon-on-insulator (PDSOI) PMOSFET based on 130 nm is investigated. First, the effect of NBTI on the IV characteristics and parameter… Click to show full abstract

The Negative Bias Temperature Instability (NBTI) effect of partially depleted silicon-on-insulator (PDSOI) PMOSFET based on 130 nm is investigated. First, the effect of NBTI on the IV characteristics and parameter degradation of T-Gate PDSOI PMOSFET was investigated by accelerated stress tests. The results show that NBTI leads to a threshold voltage negative shift, saturate drain current reduction and transconductance degradation of the PMOSFET. Next, the relationship between the threshold voltage shift and stress time, gate bias and temperature, and the channel length is investigated, and the NBTI lifetime prediction model is established. The results show that the NBTI lifetime of a 130 nm T-Gate PDSOI PMOSFET is approximately 18.7 years under the stress of VG = −1.2 V and T = 125 °C. Finally, the effect of the floating-body effect on NBTI of PDSOI PMOSFET is investigated. It is found that the NBTI degradation of T-Gate SOI devices is greater than that of the floating-body SOI devices, which indicates that the floating-body effect suppresses the NBTI degradation of SOI devices.

Keywords: pdsoi pmosfet; bias temperature; effect

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.