Biomass materials are perceived as sustainable, carbon-rich precursors for the fabrication of carbon materials. In this study, we demonstrated the capacitance performance of biomass-derived carbon, produced by using golden shower… Click to show full abstract
Biomass materials are perceived as sustainable, carbon-rich precursors for the fabrication of carbon materials. In this study, we demonstrated the capacitance performance of biomass-derived carbon, produced by using golden shower tree seeds (GTs) as carbon precursors and potassium ferrate (K2FeO4) as the activation agent. The as-prepared porous carbon (GTPC) possessed an ultrahigh specific surface area (1915 m2 g−1) and abundant pores. They also exhibited superior electrochemical performance, owing to their well-constructed porous structure, high surface area, and optimized porous structure. Optimized activated carbon (GTPC-1) was used to assemble a symmetric solid-state supercapacitor device with poly(vinyl alcohol) (PVA)/H2SO4 as a solid-state gel electrolyte. The device exhibited a maximum areal energy density of 42.93 µWh cm−2 at a power density of 520 µW cm−2.
               
Click one of the above tabs to view related content.