Efficient scheduling algorithms have been a leading research topic for heterogeneous computing systems. Although duplication-based scheduling algorithms can significantly reduce the total completion time, they are generally accompanied by an… Click to show full abstract
Efficient scheduling algorithms have been a leading research topic for heterogeneous computing systems. Although duplication-based scheduling algorithms can significantly reduce the total completion time, they are generally accompanied by an exorbitant time complexity. In this paper, we propose a new task duplication-based heuristic scheduling algorithm, LDLS, that can reduce the total completion time and maintains a low time complexity. The scheduling procedure of LDLS is composed of three main phases: In the beginning phase, the maximum number of duplications per level and per task is calculated to prevent excessive duplications from blocking regular tasks. In the next phase, the optimistic cost table (OCT) and ranking of tasks are calculated with reference to PEFT. In the final phase, scheduling is conducted based on the ranking, and the duplication of each task is dynamically determined, enabling the duplicated tasks to effectively reduce the start execution time of its successor tasks. Experiments of algorithms on randomly generated graphs and real-world applications indicate that both the scheduling length and the number of better case occurrences of LDLS are better than others.
               
Click one of the above tabs to view related content.