LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent Progress and Challenges Regarding Carbon Nanotube On-Chip Interconnects

Photo from wikipedia

Along with deep scaling transistors and complex electronics information exchange networks, very-large-scale-integrated (VLSI) circuits require high performance and ultra-low power consumption. In order to meet the demand of data-abundant workloads… Click to show full abstract

Along with deep scaling transistors and complex electronics information exchange networks, very-large-scale-integrated (VLSI) circuits require high performance and ultra-low power consumption. In order to meet the demand of data-abundant workloads and their energy efficiency, improving only the transistor performance would not be sufficient. Super high-speed microprocessors are useless if the capacity of the data lines is not increased accordingly. Meanwhile, traditional on-chip copper interconnects reach their physical limitation of resistivity and reliability and may no longer be able to keep pace with a processor’s data throughput. As one of the potential alternatives, carbon nanotubes (CNTs) have attracted important attention to become the future emerging on-chip interconnects with possible explorations of new development directions. In this paper, we focus on the electrical, thermal, and process compatibility issues of current on-chip interconnects. We review the advantages, recent developments, and dilemmas of CNT-based interconnects from the perspective of different interconnect lengths and through-silicon-via (TSV) applications.

Keywords: recent progress; chip interconnects; challenges regarding; progress challenges; regarding carbon; chip

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.