LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Miniature Soft Sensor with Origami-Inspired Self-Folding Parallel Mechanism

Photo from wikipedia

Miniature soft sensors are crucial for the perception of soft robots. Although centimeter-scale sensors have been well developed, very few works addressed millimeter-scale, three-dimensional-shaped soft sensors capable of measuring multi-axis… Click to show full abstract

Miniature soft sensors are crucial for the perception of soft robots. Although centimeter-scale sensors have been well developed, very few works addressed millimeter-scale, three-dimensional-shaped soft sensors capable of measuring multi-axis forces. In this work, we developed a millimeter-scale (overall size of 6 mm × 11 mm × 11 mm) soft sensor based on liquid metal printing technology and self-folding origami parallel mechanism. The origami design of the sensor enables the soft sensor to be manufactured within the plane and then fold into a three-dimensional shape. Furthermore, the parallel mechanism allows the sensor to rotate along two orthogonal axes. We showed that the soft sensor can be self-folded (took 17 s) using a shape-memory polymer and magnets. The results also showed that the sensor prototype can reach a deformation of up to 20 mm at the tip. The sensor can realize a measurement of external loads in six directions. We also showed that the soft sensor enables underwater sensing with a minimum sensitivity of 20 mm/s water flow. This work may provide a new manufacturing method and insight into future millimeter-scale soft sensors for bio-inspired robots.

Keywords: self folding; parallel mechanism; soft sensor; miniature soft; sensor

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.